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The rate of electron-positron pair creation and rho-meson creation by uniform 
quantum motion of charges in condensed matter is calculated in the framework 
of the Schwinger source theory. 

The creation of particle-antiparticle pairs when sufficient energy and 
momentum is available is a well-known effect in the theory of interacting 
quantum fields. Quantum electrodynamics enables us to calculate the rate at 
which the pairs are produced by electrodynamic interactions. In this paper 
we are interested in pair creation and rho-meson creation by uniform 
quantum mechanical motion of charges in condensed matter. This problem 
represents the quantum-mechanical extension of the simpler problem con- 
cerning particle production by the classical uniform motion of charges in 
dielectric medium (Pardy, 1983). 

There are many approaches to the formulation of the quantum mecha- 
nical theory of pair creation. We use here the Schwinger source theory 
(Schwinger, 1970, 1973) together with the mass operator method (Schwinger, 
1973; Tsai and Yildiz, 1973; Tsai, 1973, 1974) which was also applied to the 
(~erenkov radiation problem (Schwinger et al., 1976), the analog of our 
problem of particle creation by moving charges in condensed matter. The 
Schwinger mass operator method bypasses the explicit use of a wave 
function and the summation over final states. We will use this method for 
computing the rate of pair creation and rho-meson production by charges 
moving uniformly in condensed matter. 

There exist two kinds of production of pairs, namely, direct and 
indirect production. The first process involves only the production of pairs 
and the second one involves two steps: first the production of y radiation 
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and then its materialization in the external field. Our problem will consist in 
direct pair production. 

The basic quantity which describes the radiation process of photons is 
the mass operator 

M(x',x")=ieZT~'G+(x',x")D+,,(x'-x")7"+C.T. (1) 

where G+ and D+~, are the electron and photon propagation functions and 
as we will suppose the charged particle moves at constant velocity we can 
write for G+ 

G+ (p) = (m + 7P)-' (2) 

The symbol C.T. represents the contact term which will be determined later. 
For the photon propagation function D~+ ~ we will use here the following 
representation (Schwinger et al., 1976): 

where 

D~+"(x-x')=~-(g~'~+(1-n-Z)~l%l~)D+(x-x') (3) 
r 

D+ ( x -  x ' ) =  [ (d-~k)4eik~x-X')D(k) 
J (27r) 

(4) 

with 

1 D(k) = (5) 
Ikl2-n2(k~ 

and with ~ " -  (1,0). Further, /~ is the magnetic permeability and n is the 
index of refraction and n = (#e) 1 : ,  where e is the dielectric permittivity of 
condensed matter. 

The total decay rate may be inferred from the imaginary part of M via 

2m 
F = 2 Im M (6) 

The term Im M can be decomposed into terms for various different 
processes including radiation of real photons, direct production of e+e-  
pairs, meson production, etc., which can be achieved by adding to D(k) the 
term with radiation corrections via 

D(k)--*D(k)+SD(k) 

= 1 + fdM2 
[kl2-n2(k~ 

a(M 
Ikl  2 - r t 2 ( k ~  M 2 - i e  

(7) 
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where the last term in Eq. (7) was derived on the condition that Ikl z -  
n2( k~  2 = - M 2. The function a( M 2) can be specified as 

a, 2,  '4m2 'J2 (8) 

(Dittrich, 1978) for the direct production of e+e-  pairs by electromagnetic 
interactions. 

After insertion of Eq. (7) into Eq. (6) we have for the total rate of the 
particle production 

r = r~ + Fe+ e- (9) 

where Fv is the rate of y production and Fe+ e- is rate of e+e-  production. 
Now, we can approach the calculation of the rate of electron-positron 

pair production. We can write in the momentum representation that 

where 

M~+~- = ieZy~'(G+ (p - k) 6D+~,(k)) y" + C.T. (:0) 

F=y#(m-y(p-k))(g~,,+(1-n-2)~dl,)y" (13) 

Using the representation (Schwinger et al., 1976) 

1 1 = - ( ~ s d s f l d t  e -isx(t)e-is(1- t)M2n-2 
k 2 - 2 k p  n - 2 l k l 2 - ( k O ) Z + n - 2 M  2 Jo Jo 

Me~, e- = ie2 f 4mJM2a  ( M 2 ). n--- ~ 

1 . l F I  + C.T. 
• k 2 _ 2 k p  n - 2 l k l Z - ( k O ) 2 + M 2 n  -2 / 

where 

(12) 

(:4) 

(f(k))=-f~f(k) (ll) 

After substitution of Eq. (2) and Eq. (3) into Eq. (I0) we have with regard to 
Eq. (7) 
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where 

we get 

and 

Pardy 

x(t)=Xo+Xl 

Xo = 3 - 1 ( / E ) 2 ( 1 -  n - 2 ) ( t -  to) 

X l = 3 ( k - t 3 - 1 p ) 2 - [ k ~  

8 = t + n - 2 ( 1 - t )  

to = ( . 2 _ 1 ) - ' ( . 2 f l 2 _ 1 )  

(15) 

(16) 

(17) 

(18) 

(19) 

(e-',x,) 
(4rr)Zs2•3/2 

(20) 

( e - i , X , F )  = ( e - i , x , ) .  2mfl 2 
1-~82 

x { 1 - ( n f l ) -  2 + 2 - 1 t ( n B ) -  2[ 3-1f l2( l  + n2)+ l -  3n2] } 

(21) 

and for Me+ e we have 

M e + e = - 2--7" n 2 1 - fl z j4,,2 _ 

x (exp(- isXo)'exp[- is(l-,),,-2M21 + C.T.) 

X ( 1 - ( n f l ) - 2 + 2 - a t ( n f l ) - 2 [ 3 - 1 f l 2 ( l + n 2 ) + l - 3 n 2 ] }  (22) 

At this stage we can determine the contact term. It is determined by the 
physical requirement that for n = 1 the charge radiates no electron-positron 
pairs. With regard to this condition we have 

C.T. = - e -isK(t) (23) 

where 

g ( t )  = (tE)2(1 - / 3 2 ) +  (1 - t ) M  2 (24) 
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Using the well-known relation (Bjorken and Drell, 1965) 

f0~_~ " .. B = l n I B l +  i a r g B  (e ''A - e '~B) = In (25) 

we have after s integration 

~  +(1-t)M2n-2]-exp[ isK(t)]} /o V {exp[- i~(x~ 

=In n2~(t) (26) 
n2Xo + ( 1 - t ) M  2 

We are interested only in the nonzero imaginary part of Eq. (26). Therefore 
for 0 < t < 1, we must have 

x(t)  > 0, nZXo(t)+(1-t)M2<O (27) 

and the imaginary part of Eq. (26) is equal to ~r. From the second inequality 
of (27) follows the Cerenkov threshold condition nfl > 1. 

After t integration of Eq. (22) we have for Fe+ e- 

= m2 i~ f12 f4.~2dM2a( M2 ) r,+e- T ~ 2  (1s~ 21 

X [3 -1/2 2n2 [a(1-n2)-bn 2 q--clq-~ 1/2 2174 

t n 2 - 1  (n2 - 1 )  2 

1 

+ 8-3/2 2n 2 ) t(M 21 3(n2_1) b (281 

where t (M 2) is the solution of the algebraic equation: 

( tE)28-1( , ,2  _ a ) ( t -  to )+  (1 - t ) M  2 = 0 (29) 

where 0 < t(M z) <1 and 

a = ( 1 - ( n f l ) - 2 ) ,  b=2-1n-Z(l+n2), c=2-1(nfl)-z(1-3n z) 

(30) 
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In the case of rho-meson production the spectral function ao(M 2) 
cannot be determined from Q.E.D. because this process involves strong 
interaction dynamics. It was calculated by Schwinger and is quoted by Dass 
(1981) in his work as follows: 

e 2 M 2 ap(M2) = ~-~(~( - m  2 ) (31) 

where g is the coupling constant and m 0 is the mass of rho-meson. Then, 
the rate of rho-meson production is 

m 2 a~ f12 {8_1/2 2n 2 [a(1-n2) -bn2+c] 
Fp=--~-. n2 (1_/32) n2_l 

"Jt'~l/2 2//4 C"1"-~-3/2 2/12 ) t / (m2p) (//2_1)2 3(//2_1)b (32) 
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